

Product information 650 FIRE Universal-Sets

fix-programmed digital CDI ignition with recharge for battery

item number.	name	remark
set DMon	650 set for two-stroke,	
00131697	Ø 90mm	x2,
650812/00131692	stator complete 650, Ø90	base-plate with Ø 90 mm
650948/00131696	rotor universal	
650330/00131694	e-box two-stroke	two-stroke advance curve, 1 cylinder
650100/00129600	ignition coil, red,	with spark-plug connector 5k-ohm
set DMon	650 set for four-stroke,	
00131698	Ø 90mm	
650812/00131692	stator complete 650, Ø90	base-plate with Ø 90 mm
650948/00131696	rotor universal	
650331/00131695	e-box four-stroke	four-stroke advance curve, 1 cylinder
650100/00129600	ignition coil, red,	with spark-plug connector 5k-ohm
	. •	
set DMon	650 set for two-stroke,	
00131699	Ø 94mm	
650819/00131693	stator complete 650, Ø94	base-plate with Ø 94 mm
650948/00131696	rotor universal	
650330/00131694	e-box two-stroke	two-stroke advance curve, 1 cylinder
650100/00129600	ignition coil, red	with spark-plug connector 5k-ohm
set DMon	650 set for four-stroke,	
00131700	Ø 94mm	
650819/00131693	stator complete 650, Ø94	base-plate with Ø 94 mm
650948/00131696	rotor universal	
650331/00131695	E-Box 4-Takt	four-stroke advance curve, 1 cylinder
650100/00129600	ignition coil, red,	with spark-plug connector 5k-ohm

1. Edges of rotor determine the ignition timing!

The rotor has a trigger-window with two edges. At each direction of rotation, the <u>trailing</u> edge produces the hardware-ignition (engine's start only) immediately.

The <u>leading</u> edge starts the trigger for the software. This software-trigger determines the ignition timing (normal run after engine's start) with appropriate delay (programmed in advance curve).

If the particular edge of trigger-window passes the center of magnet in the stator, the appropriate action occurs. Here is an example for clockwise rotation.

For a reliable detection of edges in the trigger-window the rotor has to be mounted with exact distance to the stator.

2. The programmed advance curve

The advance curve is shown here with relative values, thus without direct reference to an individual engine.

The relative value describes how far is the software-ignition <u>before the hardware-ignition</u>. Later the position of rotor in relation to piston's position and long holes in stator determine the absolute (actual) ignition timing for hardware <u>and</u> software, measured at the engine in degree before top dead center (BTDC).

3. Assembly examples and actual ignition timing

E-box 650330

- Assuming the engine should start at 5° BTDC, the piston must be in the position 5° BTDC before assembling of rotor. The rotor will be mounted in this piston position so, that its hardware-edge is centered to the magnet in the stator.
- The <u>relative</u> value at 4000 rpm is 30° <u>before hardware-ignition</u>. Therefore, in this adjustment example the software-ignition is at 35° BTDC (5° BTDC + 30° relative = 35° BTDC).

E-box 650331

- Assuming the engine should start at 5° BTDC, the piston must be in the position 5° BTDC before assembling of rotor. The rotor will be mounted in this piston position so, that its hardware-edge is centered to the magnet in the stator.
- The <u>relative</u> value at 4000 rpm is 20° <u>before hardware-ignition</u>. Therefore, in this adjustment example the software-ignition is at 25° BTDC (5° BTDC + 30° relative = 25° BTDC).

A skewing of stator in its long holes results in a shift for hardware-ignition <u>and</u> software-ignition, because the magnet will be skewed with the stator. Consequently, now the piston is in another position if rotor's edges are centered to the magnet.

4. Technical data

For functional assurance a suppressor against spark interferences is necessary! Therefore a $5k\Omega$ resistor is integrated in the spark plug connector.

Ø flywheel	90,4 mm	
Ø base-plate 650812	90 mm	
Ø base-plate 650819	94 mm	
rotating direction	clockwise and	
	counter-clockwise	
ignitions pro rotation°	1	
start speed	500 rpm	
speed limit	15.000 rpm	
spark polarity	negative	
spark energy	ca. 7 mJ	
spark duration	200 μs	
rise of high voltage	2,5 μs	1kV to 8kV, 50pF load
voltage at kill-switch	+5 V	electronic shut-off
power of 12V-generator	ca. 65 W	by 9500 rpm
operation temperature	-20 +80 °C	
e-box, ignition coil		
operation temperature	-20 +120 °C	
stator, rotor		

5. Wiring diagram and part drawings

(see following pages)

